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Plan of the course

1 Integers: 1 lecture

2 Groups: 6 lectures

3 Rings and fields: 5 lectures

4 Review: 1 lecture

Today: Groups: lecture 5

(a) Transpositions in Sn

(b) Sign of a permutation in Sn

(c) The alternating group An

(d) Conjugacy classes in Sn

(e) Action of a group on a set by permutations

(f) The orbit-stabilizer theorem and the class equation of a finite group
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Recall: Symmetric group Sn

A cycle (i1, i2, . . . in) is a permutation that sends

i1 ! i2, i2 ! i3, ... ik ! i1 and stabilizes the remaining elements.

Two cycles (i1, i2, . . . ik) 2 Sn and (j1, j2, . . . jm) 2 Sn are disjoint if

and only if it 6= jp for all t and p.

Disjoint cycles commute in Sn: if it 6= jp for all t and p, then

(i1, i2, . . . ik)(j1, j2, . . . jm) = (j1, j2, . . . jm)(i1, i2, . . . ik).

Any � 2 Sn can be written as a product of disjoint cycles

� = ( )( )( ) . . . ( ) uniquely up to the order of the cycles.

In Sn we have ⇡(i1, i2, . . . ik)⇡�1
= (⇡(i1),⇡(i2), . . .⇡(ik)).

A transposition is a 2-cycle in Sn.
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Every k-cycle is a product of (k � 1) transpositions.

Corollary

The group Sn is generated by transpositions {(ij)}1i<jn.

Proof:

Remark: This presentation is not unique.
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(123) = ((3)(12)

Any &ESn is a product of disjoint cycles
Every cycle is a product of transpositions

=> Every &E Su can be written as aproduct
of transpositions

(12)(46) = (46)(12)
(13) = 12(23)(



Any element of Sn is a product of transpositions

A transposition (ij) can be visualized as a crossing of two lines that

correspond to elements i and j . Then any element � 2 Sn can be

represented as a tangle of threads. Each intersection corresponds to a

transposition.
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5 = [123456

5 =5(24)(36)(34)(56) = (1)(24563) = (24563)



The sign of a permutation: ±1, even or odd

Definition

An inversion in the ordered set {a1, a2, . . . an} is a couple ai > aj , where

i < j .
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+ 1 - 1

No inversion :
123456

1 inversion : 124356

461235 3 + 4 = 7 inversions



Theorem

Let � 2 Sn be given as a product of transpositions. Then the number of

transpositions in � has the same parity as the number of inversions in

�(1, 2, . . . n).

Idea:
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5 (12
.. n) = a

, 9 ...

i8
,
6 . ... je, . .

Action of lij) ,

how does it change # of inversions in the string above ?

a , az ... j6, 6 ... iC, ...

= (ij)5 (12 ... n)

Or
,

Co do not contribute to the change of# of inversions

If br >i and Gr >j or bri and br<j => also does not change
>

inversion inversiona
Finally ,

i <; adds or subtracts 1 inversion.



Theorem

A product of an odd number of transpositions cannot be equal to a

product of an even number of transpositions in Sn.
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=> Totally ,

action by a transposition changes #ofinversions

byaddnumber
5 = 1 => 5 (12 .. n) = 12

....
n no inversions

5 = (ij) = odd # of inversions in 5(1
,
2

....
n)

5 = (ke)(ij) => odd + odd = even # ofinversions in o(12 . -n)

etc.
Ill

parity of the number of transpositionsin 5 equale to

the parity of # of inversions inw(1 .... n)



The sign of a permutation

Definition

Let � 2 Sn. Then sgn(�) = (�1)
|transpositions in �|

.

Proposition

sgn : Sn ! {±1} is a group homomorphism.

Proof:

Recall: The kernel of a group homomorphism is a normal subgroup.
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syn(s) = 1 5 = evenof transpositions
syn (a) = -1 <Lo = odd #of trampositions

syn (5
. 5) = (1#tramp (2)

= (1)#transp(e) +# trump(i)

= (-1# transp (2)
· (-)#tramp(t) = gn(2) · sgn (5)

syn (1) = 10 = 1

Ver(gn) = Su normal subgroup



The alternating group An

Definition

The alternating group An is An = ker(sgn)E Sn. It consists of all even

permutations in Sn.

By Lagrange’s theorem, |Sn| = |An| · |{±1}| = 2|An|.

Example: S3 = {1, (12), (13), (23), (123), (132)}.
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Y : G -- H

VerY* ElkerY = H

K-cycleproductoa
(123) = ((3)((2)

even odd odd odd even even

As = (1 ,
(123), (132)3 /Ayl = 3 = E

(An) =E



Recall: the cycle type of � 2 Sn is preserved by conjugation

Moreover, any element of type (i1, i2, . . . ik) can be obtained from any

other element of the same type by conjugation.

Definition

The conjugacy class of an element h in a group G is the set of elements

{ghg�1}g2G .

Corollary

Sn is a disjoint union of conjugacy classes. Each conjugacy class is

determined by the set of lengths of disjoint cycles. The conjugacy classes

in Sn are in bijection with the partitions of the number n:

n = i1 + i2 + . . . ik ; i1 � i2 � . . . � ik � 1,

where {i1, i2, . . . ik} are the lengths of the cycles in the disjoint cycle

decomposition of elements in the given conjugacy class.
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Conjugacy classes in Sn

Example: G = S4.

Conjugacy classes $ partitions of 4.
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: 943
,

53
,

13
,

92
,
23

,
52

,
4,13

,
El, 1

,
1

, 13

5434-cycles (1234)
,

(3142).
- ! G

93
.

13 3-cycles (123)
,

(423). . (3) . 2 = S

32, 23 products of 2 disjoint 2-cycles (2) . E = 3

6+8+ 3 +6+1 = 24

(12)(34) /(Sy= 4. = 24
32 ,

1
, 13 2-cycles (12)

,
(13) (2) = 6

31 .
1

,
1

. 13 the trivial elf 1 I
⑭



Conclusions: the group Sn

Any element � 2 Sn is a product of an odd or an even number of

transpositions. The sign of � is determined by the parity of the

number of transpositions in �.

The alternating group An is the kernel of the group homomorphism

� : Sn ! {±1} given by � ! sgn(�). It consists of all even
permutations in Sn.

The conjugacy class of � 2 Sn is completely determined by the cycle

type of �.

The conjugacy classes in Sn are in bijection with the partitions of

number n.
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Action of a group on a set

Definition

A finite group G acts on a finite set E if for any g 2 G , any x 2 E the

element g(x) 2 E is defined, and 1(x) = x and g1g2(x) = g1(g2(x)) for

any g1, g2 2 G and any x 2 E .

Definition

The set Orbx = {g(x)}g2G is the orbit of the element x 2 E under the

action of the group G .

We have

1 Orbx = Orby or Orbx \ Orby = ;.
2 Every element of E belongs to an orbit.

3 Therefore, E = [r
i=1

Orbxi , where {xi}ri=1
is a complete set of

representatives of the orbits.
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Example :

In acting on E = 91,
2

. ... n3

g,
x =gzy = y =gig,

Xe Orbx

/Exercise)SimilarlyXor
a



Action of a group on itself by conjugations

Action of a finite group on itself by conjugation is an example of a group

acting on a set by permutations:

g : G ! G g : h ! ghg
�1.

Then Orbh = {ghg�1}g2G ⌘ Ch is the conjugacy class of h in G .

Therefore, any finite group is a disjoint union of its conjugacy classes:

G = [r
i=1Chi .
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2(h) = 1h1 = h ; (g,gz)(h) = (g,gz)h(g,gz)" =g.(gzhgitg =

TheG =

g . (gz(h)) .

FLEG
, gigntG .



Conjugacy classes in G

Remark

If G is abelian, then Ch = {ghg�1}g2G = {gg�1
h}g2G = {h}. Therefore,

each conjugacy class contains exactly one element and the number of

conjugacy classes equals to |G |.
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The stabilizer subgroup

Definition

Let G act on a set E by permutations. If x 2 E , then

Stabx = {g 2 G : g(x) = x}

is the stabilizer subgroup of x in G .

Proposition

The stabilizer Stabx ⇢ G is a subgroup in G .

Proof:
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(1) ((x) = X (x = 1 Stabx

(2) If g. . g2E Stabx
= gig== X = gigzE Stay

g
. x = X = (g(g)x = X

"g(gX) =g(x) = x

= ge StabI



The orbit-stabilizer theorem

Theorem

Let a finite group G act on a finite set E , and x 2 E . Then

|Orbx | = [G : Stabx ] = |G |/|Stabx |.
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Proof: Let H = Staby <G and consider the left cosets with in G

↑hen : M : EgHgeG + Orbx is a bijection
M : gH-> g . x VgEG . M

is surjective : FGGbelongas
Suppose u(g : H) =M(f ·H) Orbx = g . x = fox = fig.X = X

=> fgeH = Stabx = figHCH = gHcfH
Similarly fHCgH

=>gH =f H

=>M is injective => isbijective => # H-cosets= =Orb
= (Orbxl=att #



Application: the order of the rotational symmetries of a

cube

Let G be the group of rotational symmetries of a cube. Then G acts on

the set of faces E of the cube by permutations.
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-

Torbyl=stat
Stabx = [1 ,

r
,

12
,
r3) where wis a rotation by 11,Gr

Stabx) = 4

10rbx ! = G

=>(G) = (0rbxl · /Stabx1 = 24



Poll: All isometries of a cube

Let K be the group of all isometries of a cube: compositions of rotations

and reflections in R3
that preserve the cube. Then the order of K is

A: 24

B: 48

C: 56

D: 72

E: 60
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"IIII
-*

Action of K on the set of faces :

O 10rbx1 = 6 ; Stabx =Dy> IStabx) = S

dihedralgp of
= IG1 = /Orbx1 . /Stabl symmetries of acquare
161 = 6 . 8 = 48

.



Centralizer of an element of G

Definition

The center of a group Z (G ) ⇢ G is the set of all elements that commute

with any g 2 G .

Definition

The centralizer of an element x 2 G is the subgroup

Gx = {g 2 G : gxg
�1

= x}. In other words, the centralizer of x 2 G the

stabilizer of x 2 G with respect to the action of G on itself by conjugation.
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z(G) = (xG : xg
=

gx fg(G)
= (xG : gxg" = x FgeG)
= all l-elt conjugacy classes in G



The class equation of a finite group

Theorem

The class equation of G is

|G | = |Z (G )|+
rX

i=1

|Cxi | = |Z (G )|+
rX

i=1

[G : Gxi ],

where Cxi are all the nontrivial (with more than one element) conjugacy

classes, and Gxi are the centralizer subgroups:

Gxi = {g 2 G : gxig
�1

= xi}.
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16)= x) = [xi)+ nontrivial
cony classes

disjoint union of
i =

11
-elton

conj classes
Il

16 =1



Application: groups of prime power order

Proposition

A group of order p
n
, where p is a prime, has a nontrivial center.

Proof:
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Class equation of G
12) = 17(2)) + 16 : Gx) Gy CG = /Ex/dividesphp -

divisible ↓

E W divisible by p
IZ (6) is also divisible typ.; 12(G)11

contains the trivialelt

=> (2(6)) is a nontrivial multiple ofp
= p elements in z(G). #


