Algebra MATH-310

Lecture 6

Anna Lachowska

October 28, 2024

Plan of the course

- Integers: 1 lecture
- ② Groups: 6 lectures
- Rings and fields: 5 lectures
- Review: 1 lecture

Today: Groups: lecture 5

- (a) Transpositions in S_n
- (b) Sign of a permutation in S_n
- (c) The alternating group A_n
- (d) Conjugacy classes in S_n
- (e) Action of a group on a set by permutations
- (f) The orbit-stabilizer theorem and the class equation of a finite group

Recall: Symmetric group S_n

- A cycle $(i_1, i_2, \dots i_n)$ is a permutation that sends $i_1 \rightarrow i_2, i_2 \rightarrow i_3, \dots i_k \rightarrow i_1$ and stabilizes the remaining elements.
- Two cycles $(i_1, i_2, \dots i_k) \in S_n$ and $(j_1, j_2, \dots j_m) \in S_n$ are disjoint if and only if $i_t \neq j_p$ for all t and p.
- Disjoint cycles commute in S_n : if $i_t \neq j_p$ for all t and p, then $(i_1, i_2, \ldots i_k)(j_1, j_2, \ldots j_m) = (j_1, j_2, \ldots j_m)(i_1, i_2, \ldots i_k)$.
- Any $\sigma \in S_n$ can be written as a product of disjoint cycles $\sigma = ()())()...()$ uniquely up to the order of the cycles.
- In S_n we have $\pi(i_1, i_2, \dots i_k)\pi^{-1} = (\pi(i_1), \pi(i_2), \dots \pi(i_k))$.
- A transposition is a 2-cycle in S_n .

Every k-cycle is a product of (k-1) transpositions.

Corollary

The group S_n is generated by transpositions $\{(ij)\}_{1 \leq i < j \leq n}$.

Proof:

Any
$$G \in Sn$$
 is a product of disjoint cycles

Every cycle is a product of transpositions

=> Every $G \in Sn$ can be written as a product

of transpositions

Remark: This presentation is not unique.

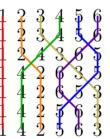
$$(13) = \underbrace{(12)(23)(12)}_{II}$$

$$(12)(46) = (46)(12)$$

◆ロト ◆個ト ◆意ト ◆意ト ・ 意 ・ 釣りぐ

Any element of S_n is a product of transpositions

A transposition (ij) can be visualized as a crossing of two lines that correspond to elements i and j. Then any element $\sigma \in S_n$ can be represented as a tangle of threads. Each intersection corresponds to a transposition.



$$G = \begin{bmatrix} 1 & 2 & 3 & 456 \\ 1 & 4 & 2 & 563 \end{bmatrix} \downarrow$$

$$G = (56)(35)(24)(36)(34)(56) = (1)(24563) = (24563)$$

The sign of a permutation: ± 1 , even or odd

Definition

An inversion in the ordered set $\{a_1, a_2, \dots a_n\}$ is a couple $a_i > a_j$, where i < j.

No mersion: 123456

1 inversion; 124356

461235

3+4=7 inversion

Theorem

Let $\sigma \in S_n$ be given as a product of transpositions. Then the number of transpositions in σ has the same parity as the number of inversions in $\sigma(1,2,\ldots n)$.

ldea:

Achon of (ij), how does it change # of inversions in the shing above?

Achon of (ij), how does it change # of inversions in the shing above?

$$a_1a_2 ... j b_1b_2 ... i c_1c_2 ... = (ij)b(12...h)$$
 a_k , c_k do not contribute to the change of # of inversions

If $b_k > i$ and $b_k > j$ or $b_k < i$ and $b_k < j =>$ also does not change

If $i < b_k < j$ or $j < b_k < i$: $i ... b_k ... j => j ... b_k ... i$

In this case for each b_k the # of inversions changes $b_2 \pm 2$

Finally, $i \leftarrow j$ adds or subtracts 1 inversion.

A. Lachowska October 27, 2024 => Totally, action by a transposition change # of inversions by an odd number.

$$5=1 \Rightarrow 5(12...n) = 12....n$$
 no inversions
 $5=(ij) \Rightarrow odd \# of inversions in $5(1,2....n)$
 $5=(kl)(ij) \Rightarrow odd + odd = even \# of inversions in $5(12...n)$$$

Theorem

A product of an odd number of transpositions cannot be equal to a product of an even number of transpositions in S_n .

parity of the number of transpositions in 5 equals to the parity of # of inversions in 6(1.... n)

A. Lachowska

The sign of a permutation

Definition

Let $\sigma \in S_n$. Then $\operatorname{sgn}(\sigma) = (-1)^{|\operatorname{transpositions in } \sigma|}$.

$$Syh(\sigma) = 1 \iff \sigma = even \# of transpositions$$

 $Syh(\sigma) = -1 \iff \sigma = odd \# of transpositions$

Proposition

 $\operatorname{sgn}: S_n \to \{\pm 1\}$ is a group homomorphism.

Proof:
$$Sgn(G \cdot T) = (-1)^{\# transp(G \cdot T)} = (-1)^{\# transp(G)} + \# transp(T) = (-1)^{\# transp(G)} \cdot (-1)^{\# transp(T)} = sgn(G) \cdot Sgn(T)$$

$$Sgn(1) = 1^{\circ} = 1$$

Recall: The kernel of a group homomorphism is a normal subgroup.

The alternating group A_n

$$9:G \to H$$
 $\ker 9 = G \oplus G \oplus H$

Definition

The alternating group A_n is $A_n = \ker(\operatorname{sgn}) \subseteq S_n$. It consists of all even permutations in S_n .

By Lagrange's theorem,
$$|S_n|=|A_n|\cdot|\{\pm 1\}|=2|A_n|.$$

Example:
$$S_3 = \{1, (12), (13), (23), (123), (132)\}.$$

$$A_3 = \begin{cases} 1, (123), (132) \end{cases}$$
 $|A_3| = 3 = \frac{6}{2}$
 $|A_n| = \frac{|S_n|}{2}$

Recall: the cycle type of $\sigma \in S_n$ is preserved by conjugation

Moreover, any element of type $(i_1, i_2, \dots i_k)$ can be obtained from any other element of the same type by conjugation.

Definition

The conjugacy class of an element h in a group G is the set of elements $\{ghg^{-1}\}_{g\in G}$.

Corollary

 S_n is a disjoint union of conjugacy classes. Each conjugacy class is determined by the set of lengths of disjoint cycles. The conjugacy classes in S_n are in bijection with the partitions of the number n:

$$n = i_1 + i_2 + \dots i_k;$$
 $i_1 \ge i_2 \ge \dots \ge i_k \ge 1,$

where $\{i_1, i_2, \dots i_k\}$ are the lengths of the cycles in the disjoint cycle decomposition of elements in the given conjugacy class.

(ロ) (回) (回) (重) (重) (三) (○)

Conjugacy classes in S_n

Example: $G = S_4$.

Conjugacy classes \leftrightarrow partitions of 4. $\{4\}$, $\{3, 1\}$, $\{2, 2\}$, $\{2, 1, (3, 1), 1, 1\}$

$$\frac{4!}{4} = 3! = 6$$

$$\binom{4}{3} \cdot 2 = 8$$

$$\binom{4}{2} \cdot \frac{1}{2} = 3$$

$$\binom{4}{2} = 6$$

$$\binom{5}{4} = 4! = 24$$

Conclusions: the group S_n

- Any element $\sigma \in S_n$ is a product of an odd or an even number of transpositions. The sign of σ is determined by the parity of the number of transpositions in σ .
- The alternating group A_n is the kernel of the group homomorphism $\phi: S_n \to \{\pm 1\}$ given by $\sigma \to sgn(\sigma)$. It consists of all even permutations in S_n .
- The conjugacy class of $\sigma \in S_n$ is completely determined by the cycle type of σ .
- The conjugacy classes in S_n are in bijection with the partitions of number n.

Action of a group on a set

Definition

A finite group G acts on a finite set E if for any $g \in G$, any $x \in E$ the element $g(x) \in E$ is defined, and 1(x) = x and $g_1g_2(x) = g_1(g_2(x))$ for any $g_1, g_2 \in G$ and any $x \in E$.

Example: Sn acting on
$$E = \{1, 2, ..., n\}$$

Definition

The set $Orb_x = \{g(x)\}_{g \in G}$ is the orbit of the element $x \in E$ under the action of the group G.

We have

$$g_1 \times = g_2 y \Rightarrow y = g_2^{-1} g_1 \times \in Orb_x$$

- $Orb_x = Orb_y$ or $Orb_x \cap Orb_y = \emptyset$. (Exercise) Similarly $x \in Orb_y$ => $Orb_x = Orb_y$
- ② Every element of E belongs to an orbit.
- **3** Therefore, $E = \bigcup_{i=1}^{r} Orb_{x_i}$, where $\{x_i\}_{i=1}^{r}$ is a complete set of representatives of the orbits.

4 □ ▶ 4 □ № 4 □ №

Action of a group on itself by conjugations

Action of a finite group on itself by conjugation is an example of a group acting on a set by permutations:

$$g: G \to G$$
 $g: h \to ghg^{-1}$.

$$1(h) = 1h1 = h \qquad ; \qquad (g_1g_2)(h) = (g_1g_2)h(g_1g_2)^{-1} = g_1(g_2hg_2)g_1^{-1} = g_1(g_2(h)). \qquad \forall h \in G, g_1, g_2 \in G.$$

Then $Orb_h = \{ghg^{-1}\}_{g \in G} \equiv C_h$ is the conjugacy class of h in G.

Therefore, any finite group is a disjoint union of its conjugacy classes:

$$G = \cup_{i=1}^r C_{h_i}$$
.

Conjugacy classes in G

Remark

If G is abelian, then $C_h = \{ghg^{-1}\}_{g \in G} = \{gg^{-1}h\}_{g \in G} = \{h\}$. Therefore, each conjugacy class contains exactly one element and the number of conjugacy classes equals to |G|.

A. Lachowska Algebra Lecture 5 October 27, 2024 16 / 23

The stabilizer subgroup

Definition

Let G act on a set E by permutations. If $x \in E$, then

$$Stab_x = \{g \in G : g(x) = x\}$$

is the stabilizer subgroup of x in G.

Proposition

The stabilizer $Stab_x \subset G$ is a subgroup in G.

(1)
$$1(x) = x$$
 $\forall x \Rightarrow 1 \in Stab_x$

(2) If
$$g_1, g_2 \in Stab_X \Rightarrow g_1g_2(x) = g_1(x) = X \Rightarrow g_1g_2 \in Stab_X$$

$$g \cdot x = x \Rightarrow (g_1g_1)x = x \Rightarrow g_1g_2 \in Stab_X$$

$$= g_1(g_1) = g_1(g_1) = g_1(g_1) = x \Rightarrow g_1g_2 \in Stab_X$$

October 27, 2024

The orbit-stabilizer theorem

Theorem

Let a finite group G act on a finite set E, and $x \in E$. Then

$$|\mathit{Orb}_x| = [\mathit{G} : \mathit{Stab}_x] = |\mathit{G}|/|\mathit{Stab}_x|.$$

Proof: Let
$$H = Stab_x \subset G$$
 and consider the left weeks within G .

Then: $M: \{gH\}_{g \in G} \rightarrow Orb_x \text{ is a bijection}$
 $M: gH \rightarrow g. \times \forall g \in G.$ $M: Surjective: \forall g \in G \text{ belongs}$

Suppose $\mu(g.H) = \mu(f.H) \in Orb_x \Rightarrow g.X = f.X \Rightarrow f' g.X = X$
 $\Rightarrow f' g \in H = Stab_x \Rightarrow f' g H \subset H \Rightarrow gH \subset fH$

Similarly $fH \subset gH \Rightarrow gH = fH$
 $\Rightarrow gH = fH$

A. Lachowska

Application: the order of the rotational symmetries of a cube

Let G be the group of rotational symmetries of a cube. Then G acts on the set of faces E of the cube by permutations.

$$|Orb_{x}| = \frac{|G|}{|Stab_{x}|}$$

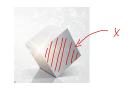
$$Stab_{x} = \{1, r, r^{2}, r^{3}\} \text{ where } r \text{ is a rotation by } \frac{\pi}{2}$$

$$|Stab_{x}| = 4$$

$$|Orb_{x}| = 6$$

$$|G| = |Orb_{x}| \cdot |Stab_{x}| = 24$$

Poll: All isometries of a cube



Let K be the group of all isometries of a cube: compositions of rotations and reflections in \mathbb{R}^3 that preserve the cube. Then the order of K is

Action of K on the set of faces;
$$[Ovb_x|=6$$
; $Stab_x=D_y=>|Stab_x|=8$ dihedral gp of $=>|G|=|Ovb_x|\cdot|Stab_x|$ symmetries of a square

$$\Rightarrow |G| = |Orb_{x}| \cdot |Stab_{x}|$$

$$|G| = 6.8 = 48.$$

Centralizer of an element of G

Definition

The center of a group $Z(G) \subset G$ is the set of all elements that commute with any $g \in G$.

Definition

The centralizer of an element $x \in G$ is the subgroup

 $G_x = \{g \in G : gxg^{-1} = x\}$. In other words, the centralizer of $x \in G$ the stabilizer of $x \in G$ with respect to the action of G on itself by conjugation.

The class equation of a finite group

Theorem

The class equation of G is

$$|G| = |Z(G)| + \sum_{i=1}^{r} |C_{x_i}| = |Z(G)| + \sum_{i=1}^{r} [G : G_{x_i}],$$

where C_{x_i} are all the nontrivial (with more than one element) conjugacy classes, and G_{x_i} are the centralizer subgroups:

$$G_{x_i} = \{g \in G : gx_ig^{-1} = x_i\}.$$

$$|G| = \sum_{i=1}^{m} |C_{X_i}| = \sum_{i=1}^{k} |C_{X_i}| + \sum_{j=1}^{r} |C_{X_j}|$$

$$disjoint \text{ union of }$$

$$conj \text{ dosses}$$

$$|G| = |Z(G)| + \sum_{j=1}^{r} |C_{X_j}| = |Z(G)| + \sum_{j=1}^{r} |G_{X_j}|$$

$$|C_{X_j}| = [G:G_{X_j}] \text{ by the orbit-stabilizer theorem}$$

Application: groups of prime power order

Proposition

A group of order p^n , where p is a prime, has a nontrivial center.

Proof: Class equation of G

$$|G| = |Z(G)| + \sum_{j=1}^{r} [G:G_{x_{j}}] \qquad G_{x_{j}} \subset G \Rightarrow |G_{x_{j}}| \text{ divides}$$

$$|G| = p^{n}$$

$$|Z(G)| \text{ is also divisible by } p$$

$$|Z(G)| \text{ is also divisible by } p \quad ; |Z(G)| \geq 1$$

$$Contains the frivial elt$$

$$\Rightarrow |Z(G)| \text{ is a nontrivial multiple of } p$$

$$\geq p \text{ elements in } Z(G).$$

A. Lachowska Algebra Lecture 5 October 27, 2024

23 / 23